Learning Task 1: Find the area of each irregular figures. 1. 7 cm 12 cm 18 cm 7 5 cm 6 cm 9 cm 6 cm 12 cm 8 cm Learning Task 2: Find the area of each figures. 5, Southville 2 Phase 3 Bgry. Luis Aguado 2. 2. 6 cm 9 cm 36 cm 32 cm 6 m 16 cm :10 cm 14 cm MATH 4 3 10 cm 3 m 4 cm 3. 3. Z 21 cm b = 9 cm 9 cm h = 4 cm

**Step-by-step explanation:**

1. To find the area of the irregular figure, we can break it down into smaller shapes and add up their areas.

First, we can split the shape into two rectangles and a triangle:

Rectangle 1: length = 18 cm, width = 12 cm

Area = length x width = 18 cm x 12 cm = 216 cm^2

Rectangle 2: length = 7.5 cm, width = 6 cm

Area = length x width = 7.5 cm x 6 cm = 45 cm^2

Triangle: base = 7 cm, height = 12 cm

Area = 1/2 x base x height = 1/2 x 7 cm x 12 cm = 42 cm^2

Total area = 216 cm^2 + 45 cm^2 + 42 cm^2 = 303 cm^2

2. To find the area of the irregular figure, we can break it down into two rectangles and a trapezoid:

Rectangle 1: length = 36 cm, width = 9 cm

Area = length x width = 36 cm x 9 cm = 324 cm^2

Rectangle 2: length = 32 cm, width = 16 cm

Area = length x width = 32 cm x 16 cm = 512 cm^2

Trapezoid: lower base = 10 cm, upper base = 14 cm, height = 6 m

First, we need to convert the height to centimeters by multiplying by 100:

Height = 6 m x 100 cm/m = 600 cm

Area = 1/2 x (lower base + upper base) x height = 1/2 x (10 cm + 14 cm) x 600 cm = 4200 cm^2

Total area = 324 cm^2 + 512 cm^2 + 4200 cm^2 = 5036 cm^2

3. To find the area of the irregular figure, we can break it down into a rectangle and a triangle:

Rectangle: length = 21 cm, width = 9 cm

Area = length x width = 21 cm x 9 cm = 189 cm^2

Triangle: base = 9 cm, height = 4 cm

Area = 1/2 x base x height = 1/2 x 9 cm x 4 cm = 18 cm^2

Total area = 189 cm^2 + 18 cm^2 = 207 cm^2